Classification of apple maturity based on color using the K-Nearest Neighboor (KNN) method

Nur Fa, Rizal Adi Saputra, Jumadil Nangi

Abstract


Purpose: The aim of this research is to provide support to apple fans and farmers in determining the choice of fruit that is ripe and ready to be consumed, using indicators of outer skin color as a basis for classification.

Design/methodology/approach: The approach uses the K-Nearest Neighbor (KNN) method to classify the level of ripeness of apples based on skin color. KNN is used as a classification method. This approach utilizes the similarity of skin color with training data to determine the level of maturity. The evaluation results showed an accuracy of 90%, making it an effective approach for identifying the ripeness level of apples.Findings/result: From the results of the system evaluation of 206, it shows an accuracy level of 90% with a sensitivity of 80% and a specificity of 67% as measured by the Hold Out Estimation model.

Originality/value/state of the art: This research uses test data/testing data originating from Kaggle and Google as well as several photos taken directly. In total, 206 images of apples were used.


Keywords


Appel; K-Nearest Neighbhors(K-NN); Holdout Estimation, Classification, Machine Learning

Full Text:

PDF

References


A. Ilmi, M. Hanif Razka, D. S. Wiratomo, and D. S. Prasvita, “Klasifikasi Tingkat Kematangan Buah Apel Berdasarkan Fitur Warna Menggunakan Algoritma K-Nearest Neighbor dan Ekstraksi Warna HSV,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, Dec. 2021, [Online]. Available: https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection

Irwan Siswanto, Ema Utami, and Suwanto Raharjo, “Klasifikasi Tingkat Kematangan Buah Berdasarkan Warna danTekstur Menggunakan Metode K-Nearest Nighbhors dan Nearest Mean Classifier (NMC),” Jurnal Teknologi Informasi dan Komunikasi, vol. Volume 10, Nomor 1, 2020.

K. Kematangan Buah Apel Berdasarkan Warna Dan Tekstur Menggunakan Algoritma K-Nearest Neighbor, F. Indra Pratama, A. Pandu Wijaya, H. Pratiwi, and A. Budianita, “Classification of Apple Fruit Ripeness Based on Color and Texture Using the K-Nearest Neighbor Algorithm Abstrak,” Jurnal Ilmiah Intech : Information Technology Journal of UMUS, vol. 5, no. 01, pp. 11–18, 2023.

C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 1–6, Jan. 2019, doi: 10.30591/jpit.v4i1.1267.

S. Raysyah, V. Arinal, and D. I. Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode KNN dan PCA,” Sistem Informasi |, vol. 8, no. 2, pp. 88–95, Sep. 2021.

M. R. Sugiyono, “Pemodelan Pengolahan Citra untuk Klasifikasi Jenis Buah Pisang Menggunakan Metode KNN,” Jurnal Pendidikan dan Konseling, vol. 4, no. 5, 2022.

K. A. Pratama, W. Priyo Atmaja, and V. Lusiana, “Klasifikasi Tingkat Kematangan Buah Kersen Menggunakan Citra HSI Dengan Metode K-Nearest Neighbor (KNN),” vol. 11, no. 1, Jan. 2022.

N. N. M. Husnul Khotimah, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,” ELTI Jurnal Elektronika, Listrik dan Teknologi Informasi Terapan, vol. 2, no. 1, pp. 1–7, Dec. 2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti

M. H. Hanafi, N. Fadillah, and A. Insan, “Optimasi Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Alpukat Berdasarkan Warna,” IT JOURNAL RESEARCH AND DEVELOPMENT, vol. 4, no. 1, pp. 10–18, May 2019, doi: 10.25299/itjrd.2019.vol4(1).2477.

F. Liantoni, “Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor,” ULTIMATICS, vol. VII, no. 2, 2015.

R. Alif Nawasta and N. Heri Cahyana, “Implementation of Mel-Frequency Cepstral Coefficient as Feature Extraction using K-Nearest Neighbor for Emotion Detection Based on Voice Intonation Implementasi Ekstraksi Ciri Mel-Frequency Cepstral Coefficient Menggunakan K-Nearest Neighbor Untuk Deteksi,” Jurnal Informatika dan Teknologi Informasi, vol. 20, no. 1, pp. 51–62, 2023, doi: 10.31515/telematika.v20i1.9518.

A. H. Pawit Rianto, “Penentuan Kematangan Buah Salak Pondoh Di Pohon Berbasis Pengolahan Citra Digital,” IJCCS, vol. Vol.11, No.2, Jul. 2017.

W. Aliansa, H. N. Ifayatin, and R. A. Saputra, “Segmentasi Kematangan Pisang Raja Berbasis Fitur Warna HSV Menggunakan Metode KNN,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 7, no. 2, pp. 595–608, Sep. 2023.

I. F. Nurahmadan, A. Agusta, P. A. Winarno, B. H. Sazali, Y. Thurfah, and A. Rosaliah, “Perbandingan Algoritma Machine Learning Untuk Klasifikasi Denyut Jantung Janin,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), Apr. 2021.

Isman, Andani Ahmad, and Abdul Latief, “Perbandingan Metode KNN Dan LBPH Pada Klasifikasi Daun Herbal,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 557–564, Jun. 2021, doi: 10.29207/resti.v5i3.3006.

P. G. Manek, B. Baso, and B. Meidyani, “Identifikasi Tingkat Kematangan Buah Pinang Menggunakan K-Nearest Neighbor Berdasarkan Fitur Tekstur dan Warna,” Journal of Information and Technology, vol. 2, no. 2, pp. 75–79, Apr. 2023, doi: 10.32938/jitu.v2i2.4205.




DOI: https://doi.org/10.31315/telematika.v21i1.11773

DOI (PDF): https://doi.org/10.31315/telematika.v21i1.11773.g6345

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: [email protected]

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika