Prediction And Detection Of Type II Diabetes Mellitus Using The K-Nearest Neighbor Algorithm

Uning Lestari, amir hamzah, Franco Albertino Karel Paays

Abstract


Purpose: High blood sugar causes Mellitus (DM), a metabolic disorder. DM affects human metabolism and causes many complications, such as heart disease, kidney problems, skin disorders, and slow healing. Therefore, using machine learning algorithms to implement an automatic diabetes diagnosis system is crucial for predicting DM.

Design/methodology/approach: This research created a DM disease prediction system using machine learning with the K-Nearest Neighbor algorithm. The National Institute of Diabetes and Digestive and Kidney Diseases, Hospital Frankfurt, Germany, and the results of health surveys and medical research are the sources of two separate datasets used in the Kaggle platform data. The stages in Machine Learning include data merging, data cleaning, and data splitting

Findings/result: This research produces the best prediction model at a ratio of 70:30, with the lowest MSE value on testing data, 0.217. With K Folding Cross-validation, it makes an average accuracy of 73.88%.

Originality/value/state of the art: This research creates a prediction model for diabetes mellitus type 2 using two different datasets with 9 features. It makes a Machine Learning model using the KNN algorithm by importing the KneighborClassifier and evaluating it using the MSE (Mean Square Error) matrix and K Folding cross-validation to determine modelling accuracy

Keywords


prediction; Diabetes Mellitus; K-Nearest Neighbor

Full Text:

PDF

References


R. G. Ginting, E. Girsang, J. B. Ginting, en H. Hartono, “Analisis Determinan Dan Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Metode Machine Learning: Scoping Review”, J. Matern. Kebidanan, 2022.

Q. R. Cahyani, M. J. Finandi, J. Rianti, D. L. Arianti, en A. D. P. Putra, “Prediksi Risiko Penyakit Diabetes menggunakan Algoritma Regresi Logistik”, JOMLAI J. Mach. Learn. Artif. Intell., 2022.

F. Fitriyani, “Prediksi Diabetes Menggunakan Algoritma Naive Bayes dan Greedy Forward Selection”, J. Nas. Teknol. dan Sist. Inf., 2021.

R. J. Hyndman en G. Athanasopoulos, “Forecasting: Principles and Practice, 2nd edition”, OTexts: Melbourne, Australia., 2019. .

H. Wu, S. Yang, Z. Huang, J. He, en X. Wang, “Type 2 diabetes mellitus prediction model based on data mining”, Informatics Med. Unlocked, 2018.

A. Sumathi en S. Meganathan, “Machine learning based pattern detection technique for diabetes mellitus prediction”, Concurr. Comput. Pract. Exp., 2022.

A. K. Dwivedi, “Analysis of computational intelligence techniques for diabetes mellitus prediction”, Neural Comput. Appl., 2018.

D. R. Ente, S. A. Thamrin, S. Arifin, H. Kuswanto, en A. Andreza, “Klasifikasi Faktor-Faktor Penyebab Penyakit Diabetes Melitus Di Rumah Sakit Unhas Menggunakan Algoritma C4.5”, Indones. J. Stat. Its Appl., 2020.

N. Maulidah, R. Supriyadi, D. Y. Utami, F. N. Hasan, A. Fauzi, en A. Christian, “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes”, Indones. J. Softw. Eng., 2021.

L. Ismail en H. Materwala, “IDMPF: intelligent diabetes mellitus prediction framework using machine learning”, Appl. Comput. Informatics, 2021.

V. Usha en N. R. Rajalakshmi, “Insights into Diabetes Prediction: A Multi-Algorithm Machine Learning Analysis”, in Proceedings of the 4th International Conference on Smart Electronics and Communication, ICOSEC 2023, 2023.

B. S. Ahamed, M. S. Arya, en A. O. Nancy V, “Prediction of Type-2 Diabetes Mellitus Disease Using Machine Learning Classifiers and Techniques”, Frontiers in Computer Science. 2022.

D. F. M. Mohideen, J. S. S. Raj, en R. S. P. Raj, “Regression Imputation and Optimized Gaussian Naive Bayes Algorithm for an Enhanced Diabetes Mellitus Prediction Model”, Brazilian Arch. Biol. Technol., 2021.

S. Uddin, I. Haque, H. Lu, M. A. Moni, en E. Gide, “Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction”, Sci. Rep., 2022.

S. Deng, L. Wang, S. Guan, M. Li, en L. Wang, “Non-parametric Nearest Neighbor Classification Based on Global Variance Difference”, Int. J. Comput. Intell. Syst., 2023.




DOI: https://doi.org/10.31315/telematika.v21i2.12384

DOI (PDF): https://doi.org/10.31315/telematika.v21i2.12384.g6664

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: [email protected]

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika