Classification of Anemia with Digital Images of Nails and Palms using the Naive Bayes Method

Nandha Juniaroesita Peksi, Bambang Yuwono, Mangaras Yanu Florestiyanto

Abstract


Purpose: Early detection of anemia based on nails and palms images by applying the Naive Bayes method, as well as to measure the level of accuracy in detecting anemia.

Design/methodology/approach: Using the Naive Bayes method. System development uses the waterfall method.

Findings/result: Based on the results of the tests that have been carried out, the resulting accuracy is 87.5% with varying light intensities and is 92.3% by using a light intensity of 5362 Lux.

Originality/value/state of the art: The difference between this study and previous research is in the image pre-processing method and classification method. In this study, the images of the nails and palms were converted to the YCbCr color space to be segmented and color features extracted. Then the color features will be classified using the Naive Bayes classification method. The output of this system is the result of the input image classification, whether normal or anemic.


Keywords


anemia; classification; naive bayes

Full Text:

PDF

References


Masrizal, “Anemia defisiensi besi,” J. Kesehat. Masyarakay, vol. 2, no. 1, pp. 140–145, 2007.

J. R. Zucker, B. A. Perkins, H. Jafari, J. Otieno, C. Obonyo, and C. C. Campbell, “Clinical signs for the recognition of children with moderate or severe anaemia in western Kenya,” Buketin World Heal. Organ., vol. 75, no. Supplement 1, pp. 97–102, 1997.

Y. Usman, “Validasi Klasifikasi Anemia Pada Balita Dengan Melihat Kepucatan Telapak Tangan,” Media Litbang Kesehat., vol. 13, no. 1, pp. 14–19, 2003.

S. Lee, C. Yang, T.-W. Hou, and C.-H. Yeh, “An Image Preprocessing Method for Fingernail Segmentation in Microscopy Image,” 2017 IEEE 2nd Int. Conf. Signal Image Process. An, pp. 489–493, 2017.

I. Usuman, A. Dharmawan, A. Zatu, and K. Frisky, “Sistem Pendeteksi Kulit Manusia Menggunakan Segmentasi Warna Kulit Pada Tipe Citra HSV ( Hue Saturation Value ),” IJEIS, vol. 2, no. 2, pp. 143–154, 2012.

J. Waykule and A. Katre, “Skin Segmentation Using YCBCR and RGB Color Models,” Int. J. Adv. Res. Comput. Sience Softw. Eng., vol. 4, no. 7, pp. 341–346, 2016.

R. Wijanarko and N. Eko, “Deteksi Wajah Berbasis Segmentasi Warna Kulit Menggunakan Ruang Warna YCbCr dan Template Matching,” J. Ilm. Cendekia Ekskata, pp. 1–6, 2017.

K. Basha, P. Ganesan, V. Kalist, B. S. Sathish, and J. M. Mary, “Comparative Study of Skin Color Detection and Segmentation in HSV and YCbCr Color Space,” 3rd Int. Conf. Recent Trends Comput. 2015, vol. 57, pp. 41–48, 2015.

A. Tamir, C. S. Jahan, M. S. Saif, S. U. Zaman, M. Islam, and A. Intisar, “Detection of Anemia from Image of the Anterior Conjunctiva of the Eye by Image Processing and Thresholding,” 2017 IEEE Reg. 10 Humanit. Technol. Conf., vol. 17, pp. 697–701, 2017.

R. G. Mannino et al., “Smartphone app for non-invasive detection of anemia using only patient-sourced photos,” Nat. Commun., pp. 2–11, 2018.

N. Sevani, Fredicia, and G. B. V Persulessy, “Detection anemia based on conjunctiva pallor level using k-means a lgorithm,” 2nd Nommensen Int. Conf. Technol. Eng., vol. 420, pp. 1–8, 2018.

S. Dhanasekaran and N. R. Shanker, “Detection of Anemia Disease Using PSO Algorithm and LBP Texture Analysis,” Int. J. Pure Appl. Math., vol. 120, no. 6, pp. 15–26, 2018.

V. R. Balaji, S. T. Suganthi, R. Rajadevi, V. K. Kumar, B. S. Balaji, and S. Pandiyan, “Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier,” Measurement, vol. 163, no. 107922, pp. 1–14, 2020.

A.-W. Hosne, T. Sadia, A. Tahsin, T. Asad, and N. Tasnim, “Palm Print Recognition System using Naive Bayes Classifier and Image Palm Print Recognition System using Naive Bayes Classifier and Image Processing Tools,” Commun. Appl. Electron., vol. 2, no. 6, pp. 45–49, 2018.

H. Septiana, K. Aji, and C. A. Sari, “Classification of Skin Diseases Types using Naive Bayes Classifier based on Local Binary Pattern Features,” 2020 Int. Semin. Appl. Technol. Inf. Commun., vol. 20, pp. 61–66, 2020.

D. Kurniawan, R. Maulana, M. Hannats, and H. Ichsan, “Implementasi Pendeteksi Penyakit Paru-Paru Berdasarkan Warna Kuku dan Suhu Tubuh Berbasis Sensor TCS3200 Dan Sensor LM35 dengan Metode Naive Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 4, pp. 3383–3389, 2019.

D. Rossiawan et al., “Identifikasi Wajah Berbasis Segmentasi Warna Kulit Wajah Menggunakan Naive Bayes Classifier,” J. Teknol. Inf., vol. 9, no. 2, pp. 99–106, 2018.

T. Ashfaq and K. Khurshid, “Classification of Hand Gestures Using Gabor Filter with Bayesian and Naïve Bayes Classifier,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 3, pp. 276–279, 2016.




DOI: https://doi.org/10.31315/telematika.v18i1.4587

DOI (PDF): https://doi.org/10.31315/telematika.v18i1.4587.g3350

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: [email protected]

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika