Sentiment Analysis of Cryptocurrency Exchange Application on Twitter Using Naïve Bayes Classifier Method

Andhika Octa Indarso, Helena Nurramdhani Irmanda, Ria Astriatma

Abstract


Purpose: The growth and development of the digital currency industry also presents a variety of applications for conducting transactions using these currencies, including utilizing cryptocurrency exchanges to make investments. InI ndonesia, there are two applications that fall into the category of the largest cryptocurrency exchange and are recognized by Bappebti (Commodity Futures Trading Regulatory Agency), namely TokoCrypto and Indodax. Both applications are analyzed based on the sentiments of their users on Twitter.

Design/methodology/approach: In this study the data collected is data originating from social media Twitter and has the keywords "indodax" or "#indodax" and "tokocrypto" or "#tokocrypto". The data used is between January 2021 – January 2022. The data collected from Twitter is processed using the Naïve Bayes Classifier algorithm.

Findings/result: From the results of the analysis, it was found that the Indodax application has a higher positive sentiment percentage value of 9% compared to TokoCrypto.

Originality/value/state of the art: The use of the Naïve Bayes algorithm in this study supports sentiment analysis of cryptocurrency exchange application users to consider which application has better positive sentiment for investing in digital currency or cryptocurrency.


Keywords


naïve bayes; indodax, tokocrypto, twitter, analisis sentimen

Full Text:

PDF

References


S. Nakatomo, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008. Consulted, 1–9. http://doi.org/10.1007/s10838-008-9062-0

O. Dniprov, Y. Chyzhmar, A. Fomenko, V. Shablystyi, O. Sydorov, “Legal Status Of Cryptocurrency as Electronic Money,” Journal of Legal, Ethical and Regulatory Issues, vol. 22, no. 2, pp. 1-6, 2019.

Bappebti. 2019. Peraturan Badan Pengawas Perdagangan Berjangka Komoditi Nomor 5 Tahun 2019 tentang Ketentuan Teknis Penyelenggaraan Pasar Fisik Aset Kripto (Crypto Asset) di Bursa Berjangka.

Bappebti. 2022. Peraturan Badan Pengawas Perdagangan Berjangka Komoditi Nomor 11 Tahun 2022 tentang Penetapan Daftar Aset Kripto yang diperdagangkan di Pasar Fisik Aset Kripto.

S. Rizkia, E. B. Setiawan, D. Puspandari, “Analisis Sentimen Kepuasan Pelanggan Terhadap Internet Provider Indihome di Twitter Menggunakan Metode Decision Tree dan Pembobotan TF-IDF,” e-Proceeding of Engineering, vol. 6, no. 2, pp. 9683-9693, 2019, ISSN: 2355-9365.

S. Christina, D. Ronald, “Peran Opinion Mining dan Sentiment Analysis Untuk Mengidentifikasikan Sentimen Publik Dalam Sistem E-Governance,” J. Teknologi Informasi, vol. 10, no. 2, pp. 65-69, 2016, doi: https://doi.org/10.47111/jti.v10i2.1433.

B. M. Akbar, A. T. Akbar, R. Husaini, “Analysis of Sentiments and Emotions about Sinovac Vaccine Using Naïve Bayes,”. Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 19, no. 2, pp. 185-200, 2022, doi: 10.31515/telematika.v19i2.7601.

A. Deolika, Kusrini, E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,”. Jurnal Teknologi Informasi, vol. 3, no. 2, pp 179-184, 2019.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,”. INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335

Putra, M. Wino Adi, Susanti, Erwin, Herwin, “Analisis Sentimen Dompet Elektronik Pada Media Sosial Twitter Menggunakan Naïve Bayes Classifier,”. IT Journal Research and Development (ITJRD). 5(1). 72-86, 2020, DOI : 10.25299/itjrd.2020.vol5(1).5159.

O’Reilly, Tim & Sarah Milstein. 2012. The Twitter Book 2nd Edition. California: O’Reilly Media Inc.

F. Tempola, M. Muhammad, A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naïve Bayes Pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,”. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 5, no. 5, 2018, DOI: 10.25126/jtiik20185983.

F. Syarief, “Pemanfaatan Media Sosial Dalam Proses Pembentukan Opini Publik (Analisa Wacana Twitter SBY),”. Jurnal Komunikasi, vol. 8, no. 3, pp. 262-266, 2017.

N. K. Widyasanti, I. K. G. D. Putra, and N. K. D. Rusjayanthi, “Seleksi Fitur Bobot Kata dengan Metode TFIDF untuk Ringkasan Bahasa Indonesia,” J. Merpati, vol. 6, no. 2, pp. 119-126, 2018.

Budi Raharjo. 2022. Uang Masa Depan: Blockhain, Bitcoin,Cryptocurrencies.

Indonesia: Yayasan Prima Agus Teknik.

T. T. Maskoen, A. Masthura, and Suwarman, “Nilai Area Under Curve dan Akurasi Neutrophil Gelatinase Associated Lipocalin untuk Diagnosis Acute Kidney Injury pada Pasien Politrauma di Instalasi Gawat Darurat RSUP dr. Hasan Sadikin Bandung,”J. Anesthesia & Critical Care, vol. 35, no. 3, pp. 158 – 164, 2017.




DOI: https://doi.org/10.31315/telematika.v20i1.9044

DOI (PDF): https://doi.org/10.31315/telematika.v20i1.9044.g5397

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: [email protected]

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika