Detection of Student Drowsiness Using Ensemble Regression Trees in Online Learning During a COVID-19 Pandemic

I Putu Agus Eka Darma Udayana, Ni Putu Eka Kherismawati, I Gede Iwan Sudipa

Abstract


Online lectures are mandatory to deal with the implementation of education during the COVID-19 pandemic. This significant change certainly creates a different experience for students. Regarding online learning, several public health experts and ophthalmologists say that residual radiation from electronic screens is causing an epidemic of eye fatigue. Research on smart classrooms actually appeared several years ago, but in reality it has not been implemented according to the planned concept. The current smart classroom research environment only uses outdated methods, which make the computer system incongruent (such as decision trees in video feeds) or only to the level of empirical studies or blueprints, which are not much help for other academic footing or reference materials. to students. This study aims to build an intelligent system that can evaluate students' attention during online classes, use teaching videos as learning feeds and input for predictions and also use advanced algorithms in several computational domains, namely face segmentation, landmarking, PERCLOS observations, Yawning and decision analysis using Ensemble Regression Trees to detect students' sleepiness, which is expected to patch up the shortcomings of the PERCLOS algorithm and the problems found in the single regression tree-based implementation. Based on the results of the tests that have been carried out, the system developed has been able to observe sleepy objects in learning videos with an accuracy of 80% so that later it can be a lesson for teachers why there are students who are sleepy during online classes either because of uninteresting material or other reasons.

Keywords


Drowsiness Detection; Online Leraning; Ensemble Regression Tree; COVID 19

Full Text:

PDF

References


P. web Kemdikbud, “Kemendikbud Terbitkan Pedoman Penyelenggaraan Belajar dari Rumah,” KEMENDIKBUD RI, Jakarta, 2020.

A. Balasopoulou et al., “Symposium Recent advances and challenges in the management of retinoblastoma Globe ‑ saving Treatments,” BMC Ophthalmol., vol. 17, no. 1, p. 1, 2017.

H. Oginska and J. Pokorski, “Fatigue and mood correlates of sleep length in three age-social groups: School children, students, and employees,” Chronobiol. Int., vol. 23, no. 6, pp. 1317–1328, 2006.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Optimizing neural network queries over video at scale,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1586–1597, 2017.

J. D. Irawan, F. Handoko, and ..., “Ruang Kuliah Pintar Pemantau Tingkat Efektivitas Pembelajaran Yang Dapat Mendeteksi Mahasiswa Bosan Dan Mengantuk,” Semin. Nas. Inov. …, pp. 250–256, 2019.

S. Terai et al., “Detecting learner drowsiness based on facial expressions and head movements in online courses,” Int. Conf. Intell. User Interfaces, Proc. IUI, pp. 124–125, 2020.

U. Trutschel, B. Sirois, D. Sommer, M. Golz, and D. Edwards, “PERCLOS: An Alertness Measure of the Past,” pp. 172–179, 2011.

R. J. Hanowski, D. Bowman, A. Alden, and W. W. Wierwille, “PERCLOS + : Moving Beyond Single-Metric Drowsiness Monitors,” SAE Tech. Pap. Ser., no. 724, 2018.

M. Maravanyika, N. Dlodlo, and N. Jere, “An adaptive recommender-system based framework for personalised teaching and learning on e-learning platforms,” 2017 IST-Africa Week Conf. IST-Africa 2017, pp. 1–9, 2017.

J. C. Lo, J. L. Ong, R. L. F. Leong, J. J. Gooley, and M. W. L. Chee, “Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep Study,” Sleep, vol. 39, no. 3, pp. 687–698, 2016.

D. Maturana, D. Mery, and Á. Soto, “Face recognition with decision tree-based local binary patterns,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6495 LNCS, no. PART 4, pp. 618–629.

V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014, pp. 1867–1874.

N. L. Khusniyah and L. Hakim, “EFEKTIFITAS PEMBELAJARAN BERBASIS DARING: SEBUAH BUKTI PADA PEMBELAJARAN BAHASA INGGRIS,” J. Pemikir. dan Penelit. Pendidik., vol. 17, no. 1, pp. 19–33, 2019.

M. D. L. Martins, “How to Effectively Integrate Technology in the Foreign Language Classroom for Learning and Collaboration,” Procedia - Soc. Behav. Sci., vol. 174, pp. 77–84, 2015.

O. I. Handarini and Program, “Pembelajaran Daring Sebagai Upaya Study From Home (SFH) Selama Pandemi Covid 19,” J. Pendidik. Adm. Perkantoran, vol. 8, no. 3, pp. 496–503, 2020.

S. D. Winata, “Gejala , Diagnosis , dan Tata Laksana pada Pasien Peminum Kafein yang Mengalami Adiksi,” Univ. Kristen Krida Wacana, vol. 21, no. 57, 2016.

I. Imanuddin, F. Alhadi, R. Oktafian, and A. Ihsan, “Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 321–329, 2019.

R. Jabbar, K. Al-Khalifa, M. Kharbeche, W. Alhajyaseen, M. Jafari, and S. Jiang, “Real-time Driver Drowsiness Detection for Android Application Using Deep Neural Networks Techniques,” Procedia Comput. Sci., vol. 130, pp. 400–407, 2018.

S. A. Lee, J. Kim, J. M. Lee, Y.-J. Hong, I.-J. Kim, and J. D. Lee, “Automatic Facial Recognition System Assisted-facial Asymmetry Scale Using Facial Landmarks,” Otol. Neurotol., vol. 41, no. 8, pp. 1140–1148, 2020.

S. Liu, Y. Wu, Q. Liu, and Q. Zhu, Design of Fatigue Driving Detection Algorithm Based on Image Processing, vol. 1. Springer Singapore, 2020.

S. Junaedi and H. Akbar, “Driver Drowsiness Detection Based on Face Feature and PERCLOS,” J. Phys. Conf. Ser., vol. 1090, no. 1, 2018.

K. A. Aryani, D. G. H. Divayana, and I. M. A. Wirawan, “Sistem Pakar Diagnosis Penyakit Jerawat di Wajah dengan Metode Certainty Factor,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 2, p. 96, 2017.

I. P. A. E. D. U. Udayana and P. G. S. C. Nugraha, “Prediksi Citra Makanan Menggunakan Convolutional Neural Network Untuk Menentukan Besaran Kalori Makanan,” J. Teknol. Inf. dan Komput., vol. 6, no. 1, pp. 30–38, 2020.




DOI: https://doi.org/10.31315/telematika.v19i2.7044

DOI (PDF): https://doi.org/10.31315/telematika.v19i2.7044.g4675

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: [email protected]

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika